TEORIA GRACELI DOS ESTADOS TRANSICIONAIS POTENCIAIS RELATIVOS INDETERMINADOS NO SDCTIE GRACELI.
O ESTADO DE ENERGIA ELETROMAGNÉTICO DOS FÓTONS, E OUTRAS ESTADOS FÍSICOS E QUÂNTICOS.
CONFORME AS ESPECIFICIDADES ENVOLVENDO O SDCTIE GRACELI, SE EM VARIAÇÕES DIFERENCIADAS PARA CADA TIPO DE ESTRUTURA DE MATÉRIA E ENERGIA, E FENÔMENOS. E CONFORME O SDCTIE GRACELI.
OU SEJA, VARRIAM DE ESTRUTURAS E RELAÇÕES COM ENERGIAS E FENÔMENOS, FORMANDO UM SISTEMA DE INFINITAS E ÍNFIMAS DIMENSÕES.
TEORIA GRACELI DA TRANSFORMAÇÃO NO SDCTIE GRACELI
TEORIA GRACELI DA TRANSFORMAÇÃO NO SDCTIE GRACELI.
TODA E QUALQUER FORMA DE TRANSFORMAÇÃO OCORREM CONFORME O SISTEMA SDCTIE GRACELI.
QUE SE FUNDAMENTA EM:
TODO E QUALQUER TIPO DE ESTRUTURA, E ENERGIA SE ENCONTRA EM TRANSFORMAÇÃO CONFORME O SDCTIE GRACELI
A LÓGICA QUÂNTICA SDCTIE GRACELI SE FUNDAMENTA EM CINCO PILARES DA FÍSICA E FILOSOFIA DESENVOLVIDOS POR GRACELI.
QUE SÃO DEZ OU MAIS DIMENSÕES DE GRACELI, PODENDO CHEGAR A MAIS DE QUARENTA.
QUE SE FUNDAMENTA EM DIMENSÕES DA MATÉRIA E DIMENSÕES DE PROCESSOS FÍSICOS, QUÍMICO, E QUE TAMBÉM PODE SER ENVOLVIDO NA BIOLOGIA QUÂNTICA.
OU SEJA, NÃO SÃO DIMENSÕES DO ESPAÇO E TEMPO.
OU SEJA, TRATA DE CAPACIDADES ENVOLVENDO A MATÉRIA E AS ESTRUTURAS, COM SUAS INTERAÇÕES ENERGIAS, FENÔMENOS E ESTADOS FÍSICOS, TRANSICIONAIS E ESTADOS POTENCIAIS DE GRACELI.
CATEGORIAS DE GRACELI.
QUE TRATA DAS CATEGORIAS DE GRACELI.
QUE SÃO TIPOS, NÍVEIS OU INTENSIDADE OU QUANTIDADE, POTENCIAIS OU CAPACIDADES, E TEMPO DE AÇÃO, O TEMPO DE AÇÃO NÃO SEGUE UMA LINEARIDADE, OU SEJA, O TEMPO DE UM PROCESSO X NO INÍCIO, NÃO TEM OS MESMOS FENÔMENOS E INTENSIDADE NO TEMPO Y NO FINAL DE UM PROCESSO, ISTO EM TODAS AS ÁREAS DA FÍSICA E SEUS RAMOS, QUÍMICA E BIOLOGIA FÍSICA.
ESPAÇO E ESTADOS TRANSICIONAIS E POTENCIAIS DE GRACELI.
QUE TRATA DAS CONDIÇÕES E POTENCIALIDADES DE TRANSIÇÕES ENTRE ESTADOS E ESPAÇOS DE GRACELI, ASSIM, COMO SEUS POTENCIAIS [ESTADOS POTENCIAIS].
INTERAÇÕES .
QUE TRATA DO UNIVERSO DE INTERAÇÕES NO SISTEMA DE DIMENSÕES DE GRACELI.
E QUE ENVOLVE TAMBÉM INTERAÇÕES DE ESPAÇO E TEMPO, CAMPOS, ENERGIAS, E ESTRUTURAS ELETRÔNICAS, E OUTROS.
TRANSFORMAÇÕES.
ONDE AS TRANSFORMAÇÕES DETERMINAM O UNIVERSO DINÂMICO E VARIACIONAL DE TODO SISTEMA.
OU SEJA, TOO X SERÁ OUTRO X, NO TEMPO FUTURO, MESMO O TEMPO NÃO EXISTINDO COMO COISA EM SI.
ONDE AS DIMENSÕES PODEM VARIAR DE DEZ ATÉ MAIS DE QUARENTA.
E QUE SE FUNDAMENTA NA FUNÇÃO GERAL:
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO]
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Lista de sistemas mecânicos quânticos com soluções analíticas
Um sistema de mecânica quântica é um sistema no qual o comportamento de suas partículas pode ser explicado através da matemática incorporando a quatro princípios:
- A quantização da energia; onde a troca de energia ocorre em pacotes de energia discreta e a transferência não é contínua, como descrito por Max Planck.
- A dualidade matéria-energia, que primeiro foi considerada por James Maxwell que a luz é uma onda eletromagnética e, descoberto por Einstein, a natureza da partícula da luz. Doravante, a luz é considerada como tendo natureza dual.
- O princípio da incerteza que estabelece um limite na precisão com que certos pares de propriedades de uma dada partícula física. Como Werner Heisenberg afirmou, em escalas microscópicas, a natureza em si não permite as medidas de posição e momento das partículas simultaneamente.
- Finalmente, o princípio da correspondência onde todas as grandezas do do mundo quântico (usualmente microscópico) tem sua correspondência no mundo clássico. Como colocado por Niels Bohr: A física clássica e física quântica dão as mesmas respostas quando o sistema se torna grande[1].
Um sistema de mecânica quântica é um sistema no qual o comportamento de suas partículas pode ser explicado através da matemática incorporando a quatro princípios:
- A quantização da energia; onde a troca de energia ocorre em pacotes de energia discreta e a transferência não é contínua, como descrito por Max Planck.
- A dualidade matéria-energia, que primeiro foi considerada por James Maxwell que a luz é uma onda eletromagnética e, descoberto por Einstein, a natureza da partícula da luz. Doravante, a luz é considerada como tendo natureza dual.
- O princípio da incerteza que estabelece um limite na precisão com que certos pares de propriedades de uma dada partícula física. Como Werner Heisenberg afirmou, em escalas microscópicas, a natureza em si não permite as medidas de posição e momento das partículas simultaneamente.
- Finalmente, o princípio da correspondência onde todas as grandezas do do mundo quântico (usualmente microscópico) tem sua correspondência no mundo clássico. Como colocado por Niels Bohr: A física clássica e física quântica dão as mesmas respostas quando o sistema se torna grande[1].
Definição matemática
Muito da compreensão da mecânica quântica pode ser obtida a partir da compreensão das soluções de forma fechada para a equação de Schrödinger não relativista dependente do tempo em um espaço de configuração apropriada. Em coordenadas cartesianas vetoriais , a equação assume a forma:
x
Muito da compreensão da mecânica quântica pode ser obtida a partir da compreensão das soluções de forma fechada para a equação de Schrödinger não relativista dependente do tempo em um espaço de configuração apropriada. Em coordenadas cartesianas vetoriais , a equação assume a forma:
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que é a função de onda do sistema, H é o operador hamiltoniano e T e V são os operadores da energia cinética e energia potencial, respectivamente. (Formas comuns desses operadores aparecem nos colchetes.) A quantidade t é o tempo. Os estados estacionários dessa equação são encontrados resolvendo-se a função de autovalores e autovetores (independente do tempo) da equação de Schrödinger,
- x
em que é a função de onda do sistema, H é o operador hamiltoniano e T e V são os operadores da energia cinética e energia potencial, respectivamente. (Formas comuns desses operadores aparecem nos colchetes.) A quantidade t é o tempo. Os estados estacionários dessa equação são encontrados resolvendo-se a função de autovalores e autovetores (independente do tempo) da equação de Schrödinger,
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
ou qualquer formulação equivalente desta equação em um sistema de coordenadas diferente das coordenadas cartesianas. Por exemplo, sistemas com simetria esférica são simplificados quando expressos com coordenadas esféricas. Muitas vezes, apenas soluções numéricas para a equação de Schrödinger podem ser encontradas para um determinado sistema físico e sua energia potencial associada. Existe um subconjunto de sistemas físicos para os quais a forma das funções de autofunções e suas energias associadas podem ser encontradas.
Esses sistemas mecânicos quânticos com soluções analíticas estão listados abaixo.
ou qualquer formulação equivalente desta equação em um sistema de coordenadas diferente das coordenadas cartesianas. Por exemplo, sistemas com simetria esférica são simplificados quando expressos com coordenadas esféricas. Muitas vezes, apenas soluções numéricas para a equação de Schrödinger podem ser encontradas para um determinado sistema físico e sua energia potencial associada. Existe um subconjunto de sistemas físicos para os quais a forma das funções de autofunções e suas energias associadas podem ser encontradas.
Esses sistemas mecânicos quânticos com soluções analíticas estão listados abaixo.
Louis de Broglie e as ondas de matéria
A dualidade partícula-onda foi enunciada pela primeira vez em 1924, pelo físico francês Louis-Victor de Broglie, que anunciou que os elétrons apresentavam características tanto ondulatórias como corpusculares, comportando-se de um ou outro modo dependendo do experimento específico. A experiência de Young (experiência da dupla fenda) exemplifica de maneira sensível o comportamento ondulatório do elétron; e pelo que já se conhecia do mesmo como partícula - a citarem-se os experimentos realizados com o tubo de Crookes, e outros - concluiu-se a dualidade onda-partícula deste ente, visto que a difração em fenda dupla é uma propriedade notoriamente ondulatória.[1]
De Broglie fundou seu raciocínio inicialmente na intuição e nos conhecimentos acerca do efeito fotoelétrico para chegar a esta conclusão. Durante os estudos de Albert Einstein acerca do efeito fotoelétrico - estudos que lhe renderam o prêmio Nobel - ele havia concluído que os fótons que atuavam no efeito fotoelétrico exibiam todas as propriedades esperadas de um feixe de partículas, comportando-se cada qual como uma partícula com energia E=h•f, onde f representa a frequência da onda eletromagnética associada aos fótons em consideração. Einstein concluiu desta forma que, em determinados processos, as ondas se comportam como se fossem corpúsculos. De Broglie imaginou então o inverso, ou seja, se ondas se comportam como partículas, porque não esperar que partículas se comportem como ondas? Levando sua ideia a cabo e confrontando-a com dados empíricos o físico francês foi capaz de relacionar com sucesso o comprimento de onda associado ao comportamento ondulatório da "partícula" com sua massa mediante a fórmula λ=h/p, onde p representa o módulo do vetor quantidade de movimento, ou seja, o produto da massa pelo módulo da velocidade (m•v) do ente; h representa a Constante de Planck, e λ é o comprimento de onda associado.[1]
x
A dualidade partícula-onda foi enunciada pela primeira vez em 1924, pelo físico francês Louis-Victor de Broglie, que anunciou que os elétrons apresentavam características tanto ondulatórias como corpusculares, comportando-se de um ou outro modo dependendo do experimento específico. A experiência de Young (experiência da dupla fenda) exemplifica de maneira sensível o comportamento ondulatório do elétron; e pelo que já se conhecia do mesmo como partícula - a citarem-se os experimentos realizados com o tubo de Crookes, e outros - concluiu-se a dualidade onda-partícula deste ente, visto que a difração em fenda dupla é uma propriedade notoriamente ondulatória.[1]
De Broglie fundou seu raciocínio inicialmente na intuição e nos conhecimentos acerca do efeito fotoelétrico para chegar a esta conclusão. Durante os estudos de Albert Einstein acerca do efeito fotoelétrico - estudos que lhe renderam o prêmio Nobel - ele havia concluído que os fótons que atuavam no efeito fotoelétrico exibiam todas as propriedades esperadas de um feixe de partículas, comportando-se cada qual como uma partícula com energia E=h•f, onde f representa a frequência da onda eletromagnética associada aos fótons em consideração. Einstein concluiu desta forma que, em determinados processos, as ondas se comportam como se fossem corpúsculos. De Broglie imaginou então o inverso, ou seja, se ondas se comportam como partículas, porque não esperar que partículas se comportem como ondas? Levando sua ideia a cabo e confrontando-a com dados empíricos o físico francês foi capaz de relacionar com sucesso o comprimento de onda associado ao comportamento ondulatório da "partícula" com sua massa mediante a fórmula λ=h/p, onde p representa o módulo do vetor quantidade de movimento, ou seja, o produto da massa pelo módulo da velocidade (m•v) do ente; h representa a Constante de Planck, e λ é o comprimento de onda associado.[1]
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Observando-se a fórmula verifica-se facilmente que, à medida que a massa ou sua velocidade aumenta, diminui-se consideravelmente o comprimento de onda. Os corpos macroscópicos têm associada uma onda, porém sua massa é tão grande que pode-se afirmar que apresentam um comprimento de onda desprezível, porém não nulo. Embora no mundo macroscópico tais efeitos ondulatórios sejam por tal imperceptíveis, no mundo subatômico estes certamente não o são, e por tal, na hora de se falar sobre "partículas" atômicas é muito importante se considerar a dualidade - já que o comportamento ondulatório determinado pelo comprimento de onda que possuem é a única forma de se explicar muitos de seus fenômenos.
O oscilador harmônico quântico é o análogo mecânico quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas mecânico quânticos que admite uma solução analítica precisa.
Observando-se a fórmula verifica-se facilmente que, à medida que a massa ou sua velocidade aumenta, diminui-se consideravelmente o comprimento de onda. Os corpos macroscópicos têm associada uma onda, porém sua massa é tão grande que pode-se afirmar que apresentam um comprimento de onda desprezível, porém não nulo. Embora no mundo macroscópico tais efeitos ondulatórios sejam por tal imperceptíveis, no mundo subatômico estes certamente não o são, e por tal, na hora de se falar sobre "partículas" atômicas é muito importante se considerar a dualidade - já que o comportamento ondulatório determinado pelo comprimento de onda que possuem é a única forma de se explicar muitos de seus fenômenos.
O oscilador harmônico quântico é o análogo mecânico quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas mecânico quânticos que admite uma solução analítica precisa.
Oscilador harmônico monodimensional
Hamiltoniano, energia e autofunções
No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático . Em mecânica clássica se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O Hamiltoniano quântico da partícula é[1]:
- x
No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático . Em mecânica clássica se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O Hamiltoniano quântico da partícula é[1]:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo
- .
- x
O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo
- .
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
- x
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
- x
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- .
- x
Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- .
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].
A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].
A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.
Aplicação: moléculas diatômicas
Ver artigo principal: Molécula diatômicaPara estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:
- x

Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
Partícula em um anel
Na mecânica quântica, o caso de uma partícula em um anel unidimensional é semelhante à partícula em uma caixa[1][2]. A equação de Schrödinger para uma partícula livre que é restrita a um anel[3] (tecnicamente, cujo espaço de configuração é o círculo ) é
- x
Na mecânica quântica, o caso de uma partícula em um anel unidimensional é semelhante à partícula em uma caixa[1][2]. A equação de Schrödinger para uma partícula livre que é restrita a um anel[3] (tecnicamente, cujo espaço de configuração é o círculo ) é
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Função de onda
Usando coordenadas polares no anel unidimensional de raio R, a função de onda depende somente da coordenada angular, e assim
- x
Usando coordenadas polares no anel unidimensional de raio R, a função de onda depende somente da coordenada angular, e assim
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
exigindo que a função de onda seja periódica em com um período (da demanda de que as funções de onda sejam funções de valor único no círculo), e que elas sejam normalizadas leva às condições
- ,x
exigindo que a função de onda seja periódica em com um período (da demanda de que as funções de onda sejam funções de valor único no círculo), e que elas sejam normalizadas leva às condições
- ,x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e
- x
e
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nestas condições, a solução da equação de Schrödinger é dada por
- x
Nestas condições, a solução da equação de Schrödinger é dada por
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Um problema importante na mecânica quântica é o de uma partícula num potencial esfericamente simétrico, isto é, um potencial que depende apenas da distância entre a partícula e um ponto central definido. Em particular, se a partícula em questão é um elétron e o potencial é derivado da lei de Coulomb, então o problema pode ser usado para descrever um átomo de hidrogênio (um elétron ou íon).
No caso geral, a dinâmica de uma partícula em um potencial esfericamente simétrico é governada por um hamiltoniano da seguinte forma:
x
Um problema importante na mecânica quântica é o de uma partícula num potencial esfericamente simétrico, isto é, um potencial que depende apenas da distância entre a partícula e um ponto central definido. Em particular, se a partícula em questão é um elétron e o potencial é derivado da lei de Coulomb, então o problema pode ser usado para descrever um átomo de hidrogênio (um elétron ou íon).
No caso geral, a dinâmica de uma partícula em um potencial esfericamente simétrico é governada por um hamiltoniano da seguinte forma:
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a massa da partícula, é o operador momentum, e o potencial depende apenas de , o módulo do vetor raio; r. As funções e energias da onda quântica (autovalores) são encontradas resolvendo a equação de Schrödinger com este hamiltoniano. Devido à simetria esférica do sistema, é natural usar coordenadas esféricas , e . Quando isso é feito, a equação de Schrödinger independente do tempo para o sistema é separável, permitindo que os problemas angulares sejam tratados facilmente, e deixando uma equação diferencial ordinária em para determinar as energias para o potencial particular em discussão.
onde é a massa da partícula, é o operador momentum, e o potencial depende apenas de , o módulo do vetor raio; r. As funções e energias da onda quântica (autovalores) são encontradas resolvendo a equação de Schrödinger com este hamiltoniano. Devido à simetria esférica do sistema, é natural usar coordenadas esféricas , e . Quando isso é feito, a equação de Schrödinger independente do tempo para o sistema é separável, permitindo que os problemas angulares sejam tratados facilmente, e deixando uma equação diferencial ordinária em para determinar as energias para o potencial particular em discussão.
Caixa monodimensional
A versão mais precisa se dá na situação idealizada de uma "caixa monodimensional", na qual a partícula de massa m pode ocupar qualquer posição no intervalo [0,L]. Para encontrar os possíveis estados estacionários, é necessário aplicar a equação de Schrödinger independente do tempo em uma dimensão para o problema:
- [1]
- x
A versão mais precisa se dá na situação idealizada de uma "caixa monodimensional", na qual a partícula de massa m pode ocupar qualquer posição no intervalo [0,L]. Para encontrar os possíveis estados estacionários, é necessário aplicar a equação de Schrödinger independente do tempo em uma dimensão para o problema:
- [1]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Considerando que o potencial é zero dentro da caixa e infinito fora, e observando que a função de onda se anula fora da caixa, temos as seguintes condições de contorno:
- [1a]
- x
Considerando que o potencial é zero dentro da caixa e infinito fora, e observando que a função de onda se anula fora da caixa, temos as seguintes condições de contorno:
- [1a]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e em que
- é a Constante reduzida de Planck,
- é a massa da partícula,
- é a função de onda estacionária independente do tempo[1] que queremos obter (funções próprias) e
- é a energia da partícula (valor próprio).
As funções próprias e valores próprios de uma partícula de massa m em uma caixa monodimensional de comprimento L são:
- [1b]
- x
e em que
- é a Constante reduzida de Planck,
- é a massa da partícula,
- é a função de onda estacionária independente do tempo[1] que queremos obter (funções próprias) e
- é a energia da partícula (valor próprio).
As funções próprias e valores próprios de uma partícula de massa m em uma caixa monodimensional de comprimento L são:
- [1b]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nota-se que só são possíveis os níveis de energia "quantizados". Além disso, como n não pode ser zero (ver mais adiante), o menor valor da energia tampouco pode sê-lo. Essa energia mínima se chama energia do ponto zero e se justifica em termos do princípio de incerteza. Devido à restrição da partícula em mover-se em uma região finita, a variância da posição tem um limite superior (o comprimento da caixa, ). Assim, de acordo com o princípio de incerteza, a variância do momento da partícula não pode ser zero e, portanto, a partícula deve ter uma certa quantidade de energia que aumenta quando a longitude da caixa L diminui.
Na física, uma partícula livre é uma partícula que, em certo sentido, não está vinculada por uma força externa, ou equivalentemente não está em uma região onde sua energia potencial varia. Na física clássica, isso significa que a partícula está presente em um espaço "sem campo". Na mecânica quântica, significa uma região de potencial uniforme, geralmente modulada para zero na região de interesse, uma vez que o potencial pode ser arbitrariamente arranjado para zero em qualquer ponto (ou superfície em três dimensões) no espaço.
Nota-se que só são possíveis os níveis de energia "quantizados". Além disso, como n não pode ser zero (ver mais adiante), o menor valor da energia tampouco pode sê-lo. Essa energia mínima se chama energia do ponto zero e se justifica em termos do princípio de incerteza. Devido à restrição da partícula em mover-se em uma região finita, a variância da posição tem um limite superior (o comprimento da caixa, ). Assim, de acordo com o princípio de incerteza, a variância do momento da partícula não pode ser zero e, portanto, a partícula deve ter uma certa quantidade de energia que aumenta quando a longitude da caixa L diminui.
Na física, uma partícula livre é uma partícula que, em certo sentido, não está vinculada por uma força externa, ou equivalentemente não está em uma região onde sua energia potencial varia. Na física clássica, isso significa que a partícula está presente em um espaço "sem campo". Na mecânica quântica, significa uma região de potencial uniforme, geralmente modulada para zero na região de interesse, uma vez que o potencial pode ser arbitrariamente arranjado para zero em qualquer ponto (ou superfície em três dimensões) no espaço.
Descrição matemática
Partícula livre clássica
A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por
- x
A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e a energia cinética, que é igual à energia total, é dada por
- x
e a energia cinética, que é igual à energia total, é dada por
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde m é a massa da partícula e v é o vetor velocidade da partícula.
onde m é a massa da partícula e v é o vetor velocidade da partícula.
Partícula livre quântica
Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:
- x
Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:
- x
onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg
- x
com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
(da mesma forma para as direções y e z) e as relações De Broglie:[1]:
- x
(da mesma forma para as direções y e z) e as relações De Broglie:[1]:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:
- x
se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas.[2][3][4]
Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas.[2][3][4]
Comentários
Postar um comentário